APPENDIX
E
ETH,
EINSTEIN'S CURRICULUM
The curriculum of
courses
for which Einstein
registered, including
hours and
names
of
teachers, is
reproduced
here from Einstein's ETH
Matrikel,
supplemented
with
information from the ETH
Programme
1896b-1900a. Courses
in
which Einstein
received
grades are
indicated
by an
asterisk;
this information
is
derived from Doc.
28,
which
lists
the
grades
as
well.
The
name
of the
professor
is
given first,
followed
by
the
names
of
any
Assistenten
listed
in
the
Programme,
all
of these
names
being
placed
in
parentheses.
The
professor
was
responsible
for the lectures
(Vorlesungen);
the
Assistenten
helped
with the
review
sessions
(Repetitorien)
and
exercises
(Übungen).
Summaries of
course
contents
are
based
upon
students' and
professors'
notes
de-
posited
at
the ETH
(SzZE
Bibliothek,
Hs)
and the
Zentralbibliothek,
Zurich. In
all
but
one
instance
(noted
below
in
square
brackets),
section
headings are
taken from
the
notes;
orthography
has been modernized
throughout.
Authors and
call
numbers
are given
at
the end
of
each
summary, together
with the
semester(s)
when the
notes
were
taken
or
used,
if
different from the
semester in
which Einstein
was
enrolled
in
the
course.
In those
cases
where
more
than
one
set
of
notes
is available,
the order
in
which
they
are
listed indicates which
notes
were
used
as
the
primary
sources
of
information.
FIRST
YEAR,
SEMESTER
I
(WINTER 1896/1897)
Differentialrechnung,*
4
St.;
Repetitorium,
1
St.;
Übungen,
2 St.
(Hurwitz,
mit Hirsch und
Amberg).
Der
Differentialquotient
und
seine
geometrische Bedeutung;
Die ebenen
Kurven;
Die höheren
Differentialquotienten; Entwicklung
der Funk-
tionen
in
Reihen;
Die
Ausdrücke
von
unbestimmter
Form;
Maxima und
Minima;
Die
unendlich kleinen
Größen; Anwendung
der
Differential-
rechnung
auf
die
Theorie der ebenen
Kurven;
Funktionen
von
mehreren
Variablen.
(Grossmann,
Hs
421:
23-24; Teucher,
Hs
29:
3;
Hurwitz,
Hs
582: 45,
WS
1897/1898)
Analytische
Geometrie,* 4
St.; Repetitorium,
1
St.
(Geiser,
mit
Amberg).
Die
Gleichung
einer
Geraden;
Drehung
des
Achsensystems; Kegel-
schnitte oder Kurven zweiter
Ordnung; Allgemeine Eigenschaften
der
Kegelschnitte; Analytische
Geometrie
des Raumes;
Analytische
Geomet–
Previous Page Next Page