268
DOC.
10
RESEARCH NOTES
~
(~y~T~)
+
a
(~tst1~aTs~)
~I~gra~
(ystY~taTs~
[eq. 209]
/GYctTST
G1~T
ist
für sich
Vektor
fällt
weg.
[136]Einstein
computes
a
reduced form of the covariant divergence
YstTrs;t
of
the
fully
co
variant antisymmetric tensor
Trs. The final
result
is [eq.
209], the
first two
terms of which
cancel
as
indicated.
A
small
error
was
made
in
expanding
the
term
[eq. 208] to
the second and
third term of
[eq. 209]:
the factor
/G
in
the third term of
[eq. 209]
should
be
within the
scope of the derivative operator. Einstein uses the correct expression
in
writing
the
second of
Maxwell's equations
on
[p.
57].
[p.
57]
i/
~(~JG®~5)
1/.
7~'r
(~T~yy~)
=0
[137]
[eq.
210]
[eq.
211]
Mutmasslicher Tensor Spannungs Tensor.[138]
Punkttensor.
kontrav. Tensor
QrB
[eq. 212]
kovarianter Tensor
trB
[eq. 213]
~1SkTrs~(aT~
~
~

2
1
~`~r?~
+
[eq.
214]
[eq.
215]
reduziert sich vermöge der Gleichungen auf
trx
~JE~'®ux~
~
2
+
1
I
Tuv
=
/Geuv$QaB
[eq.
216]
[eq.
217]
[eq.
218]