2 4 4 D O C U M E N T 1 3 9 C A L C U L A T I O N S ________________________________________________________________1324 ________________________________________________________________4143 Rim²R ¢ 2R – 2λ – κT 1 4 --gim - –= 1 2 3 4 1 3 4 2 1 4 2 3 ψilψkm ψimψkl – ψik lm , = 1 4 --( - ψik, lm ψ ik,lm + ) 1 2 3 4 3 4 1 2 ψ13ψ24 ψ13ψ24 ψ14ψ23 – … – + 1 3 2 4 2ψ12ψ34 2ψ14ψ23 – ϕα 1 2 2 3 ψ12ψ23 ψ13ψ32 – ψ13ψ44 ψ34ψ14 –+ 1 2 1 2 3 4 3 4 ψ11ψ22 ψ12ψ32 – ψ33ψ44 ψ34ψ34 –+ ϕ ϕαβ R ik lm σ – • + • · + ,, ϕα ∂xσ ∂ gilGkm gkmGil gimGkl – gklGim) – + ( ϕkϕm k l = ψilψkm ψimψkl – i m = ψαβ2 ψαk)2 ( – 0. = 0 = gαβϕαϕβ λgik Rik 1 2 -- - gik – Tik –= R