DOC.
10
RESEARCH NOTES
211
[eq.
32]
-
-
(1
+
ax\)
g
Schema
[24]
ax^x ßx
cxxjx
-
(1
+
otx2)
-ßxj
I
ßx.
-ßxj
1
Y
-1
0
ßx2
[eq.
33]
0
-1
-ßxj
ßx2
-ßxj
1
+
a
(x2
+
x2)
[26]
G
=
(1
+ ax\)
(1
+
ax2)
-
aß2x2x2
-
aß2XjX2
+ (1
+
ax2)
ß2x2
-
a2x2x2
+
(1
+ ax2)
ß2x2
= 1
+
(a
+
ß2)
x2 +
(a
+
ß2)
x2
2
"2 2
[p.
8]
Schema der
y
für rotierenden
Körper
mit
nebenstehendem
g
-
Schema
identisch![25]
+
(a2-2aß2
+
aß2
+
aß2
-
a2)
x2x2
a
+
ß2
=
0
[eq. 34]
-
1
-
2c[X2
clx1
+
c2x2
C
jXj
+
c2x2
-
1
-
2C2Xj
[27]
Determinante ist nicht
1.
(x +
toy)
+
(y
-
(üx)
1
0
2w
y
2
.
0
2
"2
x
+
y-2
+
2(0yx
-
2(0xy
+
(O
r
1
-2
(ox
2..2
(Oy
[-]x
[28]
2ooy
-2(0x
co r
H
-
j-x2
-y2
+ 2ßyx
-
2ßxy-
ayzxz
-
ax2yz
+
2otxyxy
+
1
2-2 .2-2
-a
(xy
-
yx)
Wenn
in
erster
Annäherung
djHdt
-
0
dH
dH
-d7S*+-^Sx)
'
dx
0
dH
-
-±(
-
\
dJL
=
0
(2)x+(2)ßy+(2)a (xy-yx)
y
dt
dx
+
dx
dx
J
U-)
=
dtKdx
dH
_
dx
2x
+
$y
+
2ay
(xy-yx)
+
2a
(xy
-
yx)
y