460
DOCUMENT 346
MAY 1917
bringt,[4]
zu paralysieren.
Über diese Mittel kann ich
einige Andeutungen
machen
und ich
glaube,
dass
man gerade
durch ihre
Einführung zu
einer
weiteren interes-
santen
Entwickelung
der Theorie
geführt
werden wird.
Indessen war
leider durch
meine
Berufungsangelegenheit[5]
und andere Arbeiten meine
Zeit
zu
sehr
Indes-
sen
habe ich
leider
im letzten
Jahr
zu wenig
Zeit
zur Verfügung gehabt, um
soviel
Differentialgeometrie
zu
treiben,
als
man
für
solche
Probleme
braucht,
und ich
muss
mich
deswegen
mit einer
allgemeinen
Andeutung
des Ziels
begnügen.
Sie
können sich
denken,
dass ich
ganz
besonders erfreut sein
würde, wenn
Sie in Göt-
tingen
wären
und
sich
an
der Diskussion
beteiligten.
Auf
jeden
Fall werde ich mir
erlauben,
Ihnen den
genauen
Inhalt meiner
Vorträge
sobald
als
möglich zugänglich
zu
machen.
Mit der
Versicherung
meiner
größten Hochachtung
bin ich
Ihr
ergebenster
Gustav Mie
ADftS
(Klaus Mie, Kiel). [83 503].
[1]Mie’s
Wolfskehl lectures
on general relativity
and
the
problem
of
matter
were
held
from
5
until
8 June,
and
published,
in
partly
revised and expanded
form,
as
Mie
1917a, 1917b,
and 1917c. Einstein
had declined Hilbert’s invitation to attend these lectures
(see
Doc.
341).
For discussion
of
the
correspondence
between Einstein and
Mie,
see Illy
1992.
[2]Mie’s
opinion
of
the
earlier
version
of
Einstein’s
theory,
the “Entwurf”
theory,
had been decid-
edly negative.
He
sharply
criticized the
theory,
first in
a
discussion
following
Einstein’s lecture in
Vienna in 1913
(Einstein
et al. 1913
[Vol.
4,
Doc.
18]),
and
then, at
greater length,
in
a
paper
written
later
that
year
(Mie 1914a, 1914b).
In October
1915,
he
wrote
to Wilhelm Wien “that all
sorts
of
assumptions
are
smuggled, one
after
another,
into
[the
“Entwurf”
theory],
so
that
a comprehensive
overview is lost”
(“...
dass alle
möglichen
Annahmen nach
und
nach
hineingeheimnist werden,
dass
man
alle Übersicht
verliert”), adding
that he
thought
it
“particularly
amusing...
...
that
[Einstein]
could
still
talk
about
an
“extension
of
the
principle
of
relativity,” though
I
have
already given
a
very
clear
exposition
of the
matter”
(“besonders
komisch
...
dass
er
immer noch
von
einer
"Erweiterung
des
Relativitätsprinzips“ sprechen
kann, obwohl ich die
Sache
doch
wirklich
ganz
klar
gestellt
habe.”
Gustav Mie to
Wilhelm
Wien, 10
October
1915, GyMDM,
NL
056/009).
Four
months
later,
Mie
expressed
his satisfaction
that
Einstein
had
meanwhile
given up
the “Entwurf”
theory (see
Gustav
Mie to Wilhelm
Wien,
6
February
1916,
GyMDM,
NL
056/009).
He
was
won over
to Einstein’s
new
theory-though resisting
the
interpretation
of
general
covariance
in
terms
of
general relativity
of
motion-after
reading
Hilbert
1915,
which
gives an
axiomatic
presentation
of
a
combination
of
gen-
eral
relativity
and Mie’s
theory
of
matter
(see
Gustav Mie to David
Hilbert, 13 February
1916 and 2
July
1917,
GyGöU,
Cod. Ms. Hilbert 254: 2 and
8).
It
was,
in
fact,
in
response
to the first
of
these two
letters that Hilbert
suggested
that Mie
give
the Wolfskehl lectures
(see
Gustav
Mie
to David
Hilbert,
29
February
1916,
GyGöU,
Cod. Ms. Hilbert 254:
3).
[3]In
Mie
1915,
Mie had
presented a more general
version
of
what he
called
the
“principle
of
the
relativity
of
the
gravitational
potential” (“Prinzip von
der Relativität des
Gravitationspotentials”),
originally
introduced
as part
of
the
theory
of
matter and
gravitation
advanced in Mie
1912a, 1912b,
1913. In this
theory, a
scalar
gravitational
potential
is
one
of
the fundamental
dynamical
variables.
Physical
phenomena depend
thus in
principle
not
only on potential
differences,
but
also
on
the
abso-
lute value
of
the
potential.
The
way
in which the
gravitational potential
enters into the basic
equations
of
the
theory
is, however,
such that in
regions
where
it
is
constant,
the effect
of
the
potential on phys-
ical
phenomena can
be
fully
taken into account
by rescaling
all other
dynamical
variables-and, in
the
more general
framework considered in
1915,
the
space
and time coordinates
as
well-by
a
factor
depending on
the
gravitational potential
(Mie 1913,
pp.
61-63; Mie
1915,
pp.
256-259).
An observer
measuring
these variables in
suitably
rescaled units will therefore not detect
any
influence
of
the
grav-
itational
potential.
The
theory was
thus said to
satisfy
the
principle
of
the
relativity
of
the
gravitational