DOC.
5
GENERAL
MOLECULAR
THEORY OF HEAT 107
362
A. Einstein.
Allgemeine
molekulare Theorie
der
Wärme.
Ist
xm
die
Wellenlänge
des
Energiemaximums
der
Strahlung,
so
liefert die
Erfahrung:
a
=
o»298
.
m
/T.
Man
sieht,
daß sowohl die
Art der
Abhängigkeit
von
der
Temperatur
als auch die
Größenordnung
von
lm
mittels
der
allgemeinen
molekularen Theorie
der
Warme
richtig
bestimmt
werden
kann,
und
ich
glaube,
daß diese
Übereinstimmung
bei
der
großen Allgemeinheit unserer
Voraussetzungen
nicht
dem
Zufall
zugeschrieben
werden darf.
[30]
Bern,
den 27.
März 1904.
(Eingegangen
29.
Marz
1904.)
Published
in
Annalen
der
Physik
14
(1904):
354-362.
Dated
Bern,
27 March
1904,
received
29 March
1904,
published
2
June 1904.
[1]
Einstein 1903
(Doc. 4).
[2]
See, e.g.,
Boltzmann
1877,
§
V.
This
pa-
per
is
regularly
cited
by
Planck in this
connec-
tion
(see note 3).
Boltzmann
briefly
discussed
the
topic
of
this
paper
in
Boltzmann
1898a,
pp.
40-42,
referring
the reader to
the 1877
paper
for
more
details. Einstein later referred
to
the
expression
for the
entropy,
with
w(E)
construed
as a probability, as
Boltzmann's
principle
(see,
e.g.,
Einstein 1905i
[Doc. 14],
p.
140).
[3]
See, e.g.,
Planck
1901a,
p.
556.
[4]
As Einstein
explained
in Einstein
1911c,
p.
175,
this derivation
of
the second
law
is in-
tended
to remedy a
defect in
the derivation
given
in the
previous paper.
See Einstein 1903
(Doc.
4),
§
7,
§
8,
and
§
9,
and
note 17.
[5]
Planck
1901b
is
entitled
"Ueber
die Ele-
mentarquanta
der Materie und der
Elektricität."
For additional evidence that Einstein had read
this
paper, see
note 19.
[6]
See Einstein 1903
(Doc. 4),
p.
176.
[7]
See Einstein 1903
(Doc.
4),
p.
176,
where
w(E)
is defined, in
the notation
of
the
present
paper, by:
tE
+ 5
E
(0(E)
= dp1
• • •
dpn.
[8]
"Isopyknische
Zustandsänderungen"
("iso-
pycnic changes
of
state")
are
defined
in
Einstein
1903
(Doc. 4),
p.
179.
[9]
See Einstein 1903
(Doc. 4),
p.
176. Ein-
stein
assumed,
as
noted
on p.
354,
that h
=
1/4kT,
where T is the
temperature.
[10] Compare
this model of
a composite sys-
tem
of
heat reservoirs with
the
slightly
different
model in
Einstein 1903
(Doc. 4),
§
8
and
§
9.
[11]
The individual heat reservoirs
are
assumed
to
be
thermodynamically
and
mechanically
iso-
lated from
one
another,
so
that the total
proba-
bility
factorizes.
[12]
By
"Gesamtzustand"
("total state") Ein-
stein
means
the
state
of
the
composite
system
corresponding
to
the
l
component
reservoirs'
each
having
total
energy E1', E2',
...,
E1',
re-
spectively.
[13]
Here Einstein
assumes a
monotonic in-
crease
in
the
probability
of the "total
state"
("Gesamtzustand") (see
the
preceding note),
whereas the
analogous assumption
in Einstein
1903
(Doc. 4), p. 184,
concerns
the
probability
[29]