DOC.
7
RELATIVITY LECTURE NOTES
51
2
,2
,2
X
+
I
=
X
+1"2
x'
=
jfcos(p
+
Zsin(p
l'
= -x
sin 9 +
l
cos p
l &
l'
imaginär
Subst.
Drehung
[20]
x
+
ltg9
=
0
x
+
ictgqt
=
0
soll.
gl.
wert. sein
m x
-
vt
=
0
-v =
lctg9; tg9
=
i-
cos9
=
1
1-
V
sin(p
=
.v
i-
c
J
Also
gesuchte
Transformation[21]
,
x-
vt
x
=
w
t- ^zX
f
=
w
Lorentz-transformation.
Geometrische
Interpretation (c
=
1)
[p.
8]
-x
2
neue
Einheit.
x'
x
Allgemeines
über lineare orth.
Subst.
x
'n
=
Ia
\ivXv
°wX
(1)
auv
so,
dass