54
DOC.
7
RELATIVITY LECTURE
NOTES
1
-V
1,
x
=
-
(x-vt)
w
/
1
(
v
t
=
-
I
t
zX
w
V
1
//
1
/ /
/^/\
1
X =
-
(x
-
V
t)
=
,
W WW
1
+
VV
be-
(v +
v')t
t"
=
-/
*'
-
-2X'
W
V
r2
1
WW
1
vvr\
/v
+
v'
u
U7/-T'
[22]
1
+
VV
1
WW w
=
v"
1
+
VV
x"
-
1
w
//
(x
-
v"0
J"
=
1
V
//
VV
//i
t
-
-ZX
CL
Nun ist aber
/
9
2-y
+ (2^ +
(2~2"cz
cz
c
1- V
n/2
=
1
-
V
/2
/
[23]
\
1
+
VV
/
/V
=
1- V
2
C
-
l l-
V
,2
/
\
l
+
V
VV
2
c
1
+
VV
V
2
c y
=
1
-
v
"2
Zwei
superponierte
Lorentz-Transformationen
geben
wieder eine.
Additions-
theorem
v
=
Vl+V2
1
+
V1V2