9 2 D O C . 1 2 R E L A T I V I T Y L E C T U R E N O T E S
Ende des Kollegs am Heftende (in Zürich notiert).[28]
Erstes System anders angeordnet
— — — — — — —
p23
4
p34
2
p42
3
+ +
f23
4
⋅ + ⋅ +
1
i
-----
x
-----ö
ø
⋅ –
μ
1 μ +
⋅ –------------
1
[ ]
b
μ – ( ) =
1 μ) + ( μ =
μ
1 μ +
------------ =
pμν
μ
uρ ⋅ + ⋅ +
μ
1 μ +
fμνuρ ⋅ + ⋅ + ( ) –------------ =
pμν fμν + ( )uρ ⋅ + ⋅ +
1
1
μ +
fμνuρ ⋅ + ⋅ + ) –------------( =
1 –
1
μø
+
------------ö1
+
è
æ
[26]
[25]
[27]
[p. 6]
[p. 7]
∂
z
∂y
-------
∂
y
∂z
-------
1∂
c
--------- -
x
∂t
– –
1
c
-- -
x
=
∂
x
∂z
-------
∂
z
∂x
-------
1∂
c
--------- -
y
∂t
– –
1
c
-- -
y
=
∂
y
∂x
-------
∂
x
∂y
-------
1∂
c
-------- -
z
∂t
- – –
1
c
-- -
z
=
∂
x
∂x
-------
∂
y
∂y
-------
∂
z
∂z
------ - + + ρ =
∂
z
∂y
------ -
∂
y
∂z
-------
1∂
c
--------- -
x
∂t
+ – 0 =
∂
x
∂z
-------
∂
z
∂x
------ -
1∂
c
--------- -
y
∂t
+ – 0 =
i
∂
x
∂x
-------
∂
y
∂y
-------
∂
z
∂z
------- + + 0 =
— — — — —
f23
∂f23
∂x4
---------
∂f34
∂x2
---------
1∂f41
c
----------- -
∂x2
+ – 0 =
⋅
∂
z
∂y
-------
∂–
y
∂z
---------- -
1∂–
c
------------ -
x
∂t
+ + +
1
c
-- -
x
=
∂
∂x
+
–-------z
⋅
∂
x
∂z
-------
1∂–
c
------------ -
y
∂t
+ +
1
c
-- -
y
=
∂(–
x-
)
∂x
----------------
∂–
y
∂y
------------ ⋅ + + iρ =