APPENDIX E ETH, EINSTEIN'S CURRICULUM The curriculum of courses for which Einstein registered, including hours and names of teachers, is reproduced here from Einstein's ETH Matrikel, supplemented with information from the ETH Programme 1896b-1900a. Courses in which Einstein received grades are indicated by an asterisk this information is derived from Doc. 28, which lists the grades as well. The name of the professor is given first, followed by the names of any Assistenten listed in the Programme, all of these names being placed in parentheses. The professor was responsible for the lectures (Vorlesungen) the Assistenten helped with the review sessions (Repetitorien) and exercises (Übungen). Summaries of course contents are based upon students' and professors' notes de- posited at the ETH (SzZE Bibliothek, Hs) and the Zentralbibliothek, Zurich. In all but one instance (noted below in square brackets), section headings are taken from the notes orthography has been modernized throughout. Authors and call numbers are given at the end of each summary, together with the semester(s) when the notes were taken or used, if different from the semester in which Einstein was enrolled in the course. In those cases where more than one set of notes is available, the order in which they are listed indicates which notes were used as the primary sources of information. FIRST YEAR, SEMESTER I (WINTER 1896/1897) Differentialrechnung,* 4 St. Repetitorium, 1 St. Übungen, 2 St. (Hurwitz, mit Hirsch und Amberg). Der Differentialquotient und seine geometrische Bedeutung Die ebenen Kurven Die höheren Differentialquotienten Entwicklung der Funk- tionen in Reihen Die Ausdrücke von unbestimmter Form Maxima und Minima Die unendlich kleinen Größen Anwendung der Differential- rechnung auf die Theorie der ebenen Kurven Funktionen von mehreren Variablen. (Grossmann, Hs 421: 23-24 Teucher, Hs 29: 3 Hurwitz, Hs 582: 45, WS 1897/1898) Analytische Geometrie,* 4 St. Repetitorium, 1 St. (Geiser, mit Amberg). Die Gleichung einer Geraden Drehung des Achsensystems Kegel- schnitte oder Kurven zweiter Ordnung Allgemeine Eigenschaften der Kegelschnitte Analytische Geometrie des Raumes Analytische Geomet–