30 DOCUMENT 23 SEPTEMBER 1896 " a2 - b2 + c2 29 cos ß = = TI = 0,8055 2ac 36 log cos ß = 9,9061 - 10 ß = 36° 20' a2 + b2 - c2 43 cos y = - = - 2ab 48 log cos y = 9,95226 - 10 y = 26° 23'. Berechnung der Seite a Da 2^a stumpf, so ist a = 2r . sin (180° - a) log a = log 20 + log sin (64° 43' 38")[4] = 1,30103 + 9,94884 - 10 = 1,24987 a = 17,77. AUFGABE 2.[5] Nennen wir den Abstand eines solchen Kreises aus dem gegebenen System vom Mittelpunkt p, so ist sein Radius = -Jr2 - p2. Seine Gleichung ist: (x - p)2 + r2 - p2 y2 = r2 - p2 x2 - 2px + p2 + y2 = r2 - p2 x2 - 2px + y2 = r2 - 2p2. [4] "64°" underlined twice. "Fehler im Ab- schreiben" and "Resultat richtig." are written in the left margin. [5] The problem, recorded with slight varia- tions by other examinees, is: Consider a circle of radius r, centered on the origin of a rectangular coordinate system. At each point along the x-axis, another circle is constructed, with center at this point and diameter deter- mined by the intersections of the perpendic- ular to the x-axis with the original circle. The circles so constructed are enveloped by an ellipse of semiaxes r and r^/2. When the dis- tance of the centers of the circles from the origin exceeds a certain maximum value, the circles cease to touch the envelope. Prove the last two statements and determine this maximum value.
Previous Page Next Page

Extracted Text (may have errors)

30 DOCUMENT 23 SEPTEMBER 1896 " a2 - b2 + c2 29 cos ß = = TI = 0,8055 2ac 36 log cos ß = 9,9061 - 10 ß = 36° 20' a2 + b2 - c2 43 cos y = - = - 2ab 48 log cos y = 9,95226 - 10 y = 26° 23'. Berechnung der Seite a Da 2^a stumpf, so ist a = 2r . sin (180° - a) log a = log 20 + log sin (64° 43' 38")[4] = 1,30103 + 9,94884 - 10 = 1,24987 a = 17,77. AUFGABE 2.[5] Nennen wir den Abstand eines solchen Kreises aus dem gegebenen System vom Mittelpunkt p, so ist sein Radius = -Jr2 - p2. Seine Gleichung ist: (x - p)2 + r2 - p2 y2 = r2 - p2 x2 - 2px + p2 + y2 = r2 - p2 x2 - 2px + y2 = r2 - 2p2. [4] "64°" underlined twice. "Fehler im Ab- schreiben" and "Resultat richtig." are written in the left margin. [5] The problem, recorded with slight varia- tions by other examinees, is: Consider a circle of radius r, centered on the origin of a rectangular coordinate system. At each point along the x-axis, another circle is constructed, with center at this point and diameter deter- mined by the intersections of the perpendic- ular to the x-axis with the original circle. The circles so constructed are enveloped by an ellipse of semiaxes r and r^/2. When the dis- tance of the centers of the circles from the origin exceeds a certain maximum value, the circles cease to touch the envelope. Prove the last two statements and determine this maximum value.

Help

loading