384 DOCUMENT 333 DECEMBER 1911 "point to point" method (for background to this method, see Phillips 1987, pp. 81-129). Habicht's modification probably consisted of arranging a set of several condensers and charg- ing them at different points of the cycle. In principle this improvement would generate several values of the waveform simultaneously. [3]This phrase and the placement arrow are written by hand. [4]The bifilar loop oscillograph, first proposed by André-Eugene Blondel (1863-1938) (see Phillips 1987, pp. 138-143) and manufactured by Siemens & Halske (see Siemens & Halske 1907, pp. 30-31). The current to be measured passed in a double loop of very thin wire carry- ing a small mirror and placed between the poles of a powerful electromagnet. The mirror al- lowed the deflection of the wires to be observed by means of a light beam. The path of the beam was recorded on a photographic film. [5]A reference to the glow-light tube oscillographs in use at the beginning of the century. The shape and size of an electrical discharge (glow) in a partially evacuated tube varies with the current flowing in it. Observation of the tube in a rotating mirror allowed visualization of the variation of the electrical waveform applied to it (see Lehmann 1909, pp. 1701-1702). [6]HABICHT had demonstrated the "Maschinchen" twelve days earlier before the Deutsche Physikalische Gesellschaft in Berlin (see Doc. 330). [7]Probably a reference to a quadrant electrometer developed by Julius Elster (1854-1920) and Hans Friedrich Geitel (1855-1923) and described by them in Elster and Geitel 1898. Used for measuring weak electrical voltages, this instrument had a moving needle, which was placed between four metallic plates and suspended by a very thin platinum wire. [8]Haber may have attended HABICHT'S demonstration. [9]Marie Curie. [10]The ultra-resistor was later offered as an accessory to the "Maschinchen" (see the edito- rial note, "Einstein's 'Maschinchen' for the Measurement of Small Quantities of Electricity," pp. 51-55). 333. From Max Laue München. Bismarkstr. 22. 27. XII. [1911][1] Lieber Herr Professor Ich habe mich jetzt eingehend mit Ihrer Gravitationsarbeit[2] beschäftigt u. darüber auch im hiesigen Kuolloquium vorgetragen.[3] Ich glaube nicht an diese Theorie, weil ich die völlige Gleichwertigkeit Ihrer Systeme K u. K' nicht zuzugeben vermag.[4] Für das Gravitationsfeld im System K muss doch ein, die Gravitation verursachender Körper vorhanden sein, für das beschleu- nigte System K' aber nicht. Die Frage nach ihm muss doch also sofort ent- scheiden, ob ein wirkliches Gravitationsfeld oder nur ein beschleunigtes Be- zugssystem vorliegt. Trotzdem hat mich die Arbeit sehr interressiert, weil sie die Konsequenzen zeigt, zu denen die Gleichsetzung von Träger und ponde- rabler Masse führt. Ausserordentlich charakteristisch scheint mir auch, dass dabei das Gravitationspotential eine physikalische Bedeutung bekommt, wel- che dem elektrostatischen Potential völlig abgeht. Man könnte ja das erstere
Previous Page Next Page

Extracted Text (may have errors)

384 DOCUMENT 333 DECEMBER 1911 "point to point" method (for background to this method, see Phillips 1987, pp. 81-129). Habicht's modification probably consisted of arranging a set of several condensers and charg- ing them at different points of the cycle. In principle this improvement would generate several values of the waveform simultaneously. [3]This phrase and the placement arrow are written by hand. [4]The bifilar loop oscillograph, first proposed by André-Eugene Blondel (1863-1938) (see Phillips 1987, pp. 138-143) and manufactured by Siemens & Halske (see Siemens & Halske 1907, pp. 30-31). The current to be measured passed in a double loop of very thin wire carry- ing a small mirror and placed between the poles of a powerful electromagnet. The mirror al- lowed the deflection of the wires to be observed by means of a light beam. The path of the beam was recorded on a photographic film. [5]A reference to the glow-light tube oscillographs in use at the beginning of the century. The shape and size of an electrical discharge (glow) in a partially evacuated tube varies with the current flowing in it. Observation of the tube in a rotating mirror allowed visualization of the variation of the electrical waveform applied to it (see Lehmann 1909, pp. 1701-1702). [6]HABICHT had demonstrated the "Maschinchen" twelve days earlier before the Deutsche Physikalische Gesellschaft in Berlin (see Doc. 330). [7]Probably a reference to a quadrant electrometer developed by Julius Elster (1854-1920) and Hans Friedrich Geitel (1855-1923) and described by them in Elster and Geitel 1898. Used for measuring weak electrical voltages, this instrument had a moving needle, which was placed between four metallic plates and suspended by a very thin platinum wire. [8]Haber may have attended HABICHT'S demonstration. [9]Marie Curie. [10]The ultra-resistor was later offered as an accessory to the "Maschinchen" (see the edito- rial note, "Einstein's 'Maschinchen' for the Measurement of Small Quantities of Electricity," pp. 51-55). 333. From Max Laue München. Bismarkstr. 22. 27. XII. [1911][1] Lieber Herr Professor Ich habe mich jetzt eingehend mit Ihrer Gravitationsarbeit[2] beschäftigt u. darüber auch im hiesigen Kuolloquium vorgetragen.[3] Ich glaube nicht an diese Theorie, weil ich die völlige Gleichwertigkeit Ihrer Systeme K u. K' nicht zuzugeben vermag.[4] Für das Gravitationsfeld im System K muss doch ein, die Gravitation verursachender Körper vorhanden sein, für das beschleu- nigte System K' aber nicht. Die Frage nach ihm muss doch also sofort ent- scheiden, ob ein wirkliches Gravitationsfeld oder nur ein beschleunigtes Be- zugssystem vorliegt. Trotzdem hat mich die Arbeit sehr interressiert, weil sie die Konsequenzen zeigt, zu denen die Gleichsetzung von Träger und ponde- rabler Masse führt. Ausserordentlich charakteristisch scheint mir auch, dass dabei das Gravitationspotential eine physikalische Bedeutung bekommt, wel- che dem elektrostatischen Potential völlig abgeht. Man könnte ja das erstere

Help

loading