DOCUMENT
10 MAY 1914
27
Ich
formuliere
meine
Fragestellung unter völliger
Elimination des
Begriffes
G(q, p,
a)
ganz
in
Anpassung
an
Deine
Sprechweise.
Und
formuliere
dann auch die
Lösung
Deines Problems in dieser
Terminologie.
-o-
Aus
psychologischen
Gründen formuliere ich alles
an
Hand eines
einigermaßen
specialisierten
Falles.- Hast
Du mich
hier
verstanden,
so
erräthst Du
unmittelbar
den
allgemeinen
Gedanken.
Einstein: Die
Annahme einer
G(q, p,
a)
ist
unzulässig,
dem Boltzmann’schen
Gedanken vollkommen
widerstrebend
.....
System von
selbst....
....
u.s.w.
-o-
Mein
Problem und die
von
mir
gefundene
Lösung
ist
21.
V.
1914. Leiden.
Antworte
mir darüber nicht!!!-
Wir
besprechen
das
besser.-
Lieber
Einstein
empfinde
es
bitte
nicht
als
Missbrauch,
dass ich
Dir
schon wieder
schreibe-aber
ich
bin
enorm an
den Sachen interessiert. Dein
Ehrenfest
ADft (NeLR,
Ehrenfest
Archive,
Scientific
Correspondence, Manuscript Supplement, m 7). [78
605.1].
The
presentation
here
departs
from that in the
original
where the dated
note
and
signature
appear on
the second
page
of
the
fourteen-page original.
Two
appended pages
of
calculations related
to
Ehrenfest
1914
are
omitted.
[1]This
document is
dated
on
the
assumption
that it
was
written the
same day
as
the
marginal
text.
[2]This
draft
covers
some
of
the
same
topics as
the
preceding document,
a
draft
presumably
written
one
day
earlier.
[3]Doc.
8.
[4]The
square
brackets here
and
in the
subsequent
text
are
in
the
original.
[5]The
equation
below follows from the condition
that
the
energy
of
a rotating
particle
is
quantized
in units
hv/2.
See
Ehrenfest
1913a
for
a
discussion.
[6]"eH/cr2w" in the left-hand side below should be
"eH/2cr2"
” (see
also Doc.
4).
[7]The
statement is made in Doc.
8.
[8]The
following
statement is
paraphrased
from Doc.
8.
[9]See
“(9)
Als
Schlussbemerkung”
below.
[10]See
Ehrenfest
1914
for
a general
derivation
of
expressions
for the
entropy
and
the
distribution
function. u is
a Lagrange
multiplier
used in the calculation
of
the most
probable
distribution
with the
constraints
of
constant
energy
and constant number
of
particles.
It has the
properties
of
an
inverse
temperature.
[11]Peter
Debye
(1884-1966)
was
Professor
of
Mathematical
Physics
and
Theoretical
Mechanics
at the
University
of
Utrecht. See
Debye
1914,
based
on
his
lectures at
a meeting
in
Göttingen
in
spring
1913
under
the
auspices
of
the
Wolfskehl
Foundation.
[12]See
Ehrenfest
1914,
p.
660.
[13]In
Ehrenfest 1914, p. 660,
a
“pure” (“reine”)
function
of
p,
q,
and
a
is defined
as a
function with
the
property
ƒ(p,
q,
a)
=
f[i(p,
q,
a)].
[14]See Herzfeld
1912.
[15]Einstein
1907a
(Vol. 2,
Doc.
38).
[16]The
remainder
of
this
paragraph
is
a quotation
from Doc.
8 (with
the numbers
1-4
supplied
by
Ehrenfest).