1 9 8 D O C . 1 2 2 T H E A F F I N E F I E L D T H E O R Y
Damit diese Gleichungen mit der Erfahrung vereinbar seien, muss die Konstante
γ praktisch verschwindend klein sein, da sonst keine Felder ohne merkbare elektri-
sche Dichten möglich wären.
Die Theorie liefert ¢aber² zwanglos die bisher bekannten Gesetze des Gravitati-
onsfeldes und des elektromagnetischen Feldes sowie einen Wesens-
Zusammenhang beider Feldarten; aber ¢nicht² sie bringt uns über die Struktur der
Elektronen keine Aufklärung.
AD. [1 029]. The manuscript consists of five pages. The first two pages were written on the back of
a fragment of an unidentified typescript. The third, fourth, and fifth pages were written on the back
of the beginning of a typescript of Hans Reichenbach’s contribution to the meeting of German phys-
icists in Jena, 18–24 September 1921 (Reichenbach 1921). Cropped. See Einstein 1923s (Doc. 123)
for an English translation.
[1]Dated by the fact that the translated version was published in Nature in its issue of 22 September
1923.
[2]The editor of Nature had requested the article in Abs. 16.
[3]Eddington 1921, 1923. The following presentation of the theory is based on Einstein 1923e (Vol.
13, Doc. 425) and Einstein 1923h, 1923n, 1925a (Docs. 13, 52, 282, respectively).
[4]Tullio Levi-Civita, Hermann Weyl, Arthur S. Eddington (1882–1944). The latter was Professor
of Astronomy and Experimental Philosophy at the University of Cambridge and director of its Obser-
vatory.
[5]At this point in the original text, Einstein indicates a note he has appended at the foot of the page:
“Summationszeichen werden in […].” In the published version (see the following document), the
footnote reads: “In accordance with custom, the signs of summation are omitted.”
[6]At this point in the original text, Einstein indicates a note he has appended at the foot of the page:
“Herr Droste in Leiden ist unabhängig von mir auf dieselbe Idee gekommen.” Droste’s contribution
is also acknowledged in a footnote added in proof to Einstein 1923n (Doc. 52).
Previous Page Next Page