D O C U M E N T 2 3 2 J U N E 1 9 2 8 3 7 7 Sie sagten, dass I und II sich unterschieden inbezug auf die Verträglichkeit. Ich sehe es nicht ein. Nach I wird 3) und 4) . Bildet man aus 3) die Divergenz und aus 4) die Operation, so fallen die her- aus, und die Differenz der rechten Seiten wird auch verschwinden, auf Grund der Verjüngung der symmetrischen Gl. 5): Aber auch nach II gilt dasselbe, da nach II 3*) , Ihre Divergenz ist dieselbe wie nach I. Die Gl. 4) und 5) sind dieselben auch nach II. Mit herzlichem Gruss Ihnen ergeben J. Grommer. ALS. [11 416]. [1] Grommer (1879–1933) was a Belorussian-born Jewish mathematician. [2] In Einstein 1928o (Doc. 219), § 2, Einstein had introduced the linearized limit of his field equa- tions governing the tetrad field and introduced the bar on top to signify quantities of first order solving these approximative field equations. Grommer likely draws on this notation here, and equally likely extends it to quantities of second order below, signified by a double bar. [3] “Equations I” refers to the field equations resulting from the Lagrangian introduced in §1 of Einstein 1928o (Doc. 219), “Equations II” refers to the field equations introduced in the remarks at proof stage at the end of the same paper. [4] The text “(Schwarzschild)” is writtten directly above “Weylsche” and directly below “Elektro- magnetisches.” One might thus think that “Schwarzschild” was supposed to be inserted after “Feld,” identifying the case of a centrally symmetric field without the electromagnetic field as the Schwarzschild solution. However, it seems more likely that Grommer meant to insert “(Schwarzschild)” directly after “Weylsche” in order to signify that what he intended to do was to go to the Schwarzschild limit of an axisymmetric solution. For this limit and how it relates to the standard Schwarzschild metric, see Weyl 1917 and Bach and Weyl 1922. [5] To the field equations I and field equations II as described in note 3. [6] There should be a comma after the first l. h , , h h + = h  h h + = i h h h h h + + 0 = h   h + = –h ha
Previous Page Next Page