2 8 2 D O C U M E N T 1 5 6 J A N U A R Y 1 9 2 6 156. From Emmy Noether[1] Blaricum (Noordholland) Villa Cornelia, (bis 10. 1. 26) 7/ 1. 26. Sehr geehrter Herr Professor! Gleichzeitig geht als Geschäftspapier an Ihr Sekretariat die Arbeit Zaycoff zu- rück, die leider für die math. Annalen ganz und garnicht passt.[2] Es handelt sich zuerst um eine nicht allzu durchsichtige Wiedergabe der Haupt- sätze meiner “Invarianten Variationsprobleme” (Gött. Nachr. 1918 oder 19),[3] mit einer geringen Erweiterung—Invarianz des Integrals bis auf Divergenzglied—die sich schon bei Bessel-Hagen findet (Math. Ann. etwa 1922),[4] in seiner an die obi- ge Note anschließenden Arbeit über die Erhaltungssätze der Elektrodynamik. In § 2 wird über diese Arbeit von Bessel-Hagen referiert (daß er mich hier zitiert ist irrtümlich) es wird dann die naheliegende Integration der Erhaltungssätze durchgeführt, die bei Bessel-Hagen fehlt. In den nächsten Paragraphen wird nach der Variationsmethode die Aufstellung der Feldgleichungen und ihrer Abhängigkeiten im Fall der allgemeinen Relativität durchgeführt erst bei verschwindendem elektrischen Vektor, dann ohne diese Spe- zialisierung und schließlich im Weylschen Fall oder noch allgemeiner da nur ge- rechnet ist und kein Wort der Erklärung gesagt (außer in der Einleitung), so ist das schwer zu erkennen. Die ganze Systematisierung gegenüber den früheren—vor allem gegenüber Klein—beruht darin, daß die Formeln für eine unbestimmte Wirkungsfunktion W berechnet werden, und daß erst in die fertigen Formeln der Wert von W eingesetzt wird. Für jemand der die Theorie nicht kennt, ist unmöglich zu verstehen, was die Rechnungen sollen. Die Sache stellt auch deshalb keinen wesentlichen Fortschritt dar, weil schließ- lich fast alle mit dem Variationsprinzip hier gearbeitet haben. Mir kam es in den „Invarianten Variationsproblemen“ nur auf die scharfe Formulierung der Tragwei- te des Prinzips an, und vor allem auf die Umkehrung die hier nicht herein spielt. Ich kann nicht beurteilen, inwieweit die Integration der Erhaltungssätze von physikalischem Interesse ist. Sollte es der Fall sein, so ließe sich vielleicht dieser kurze Teil unter Berufung auf Bessel-Hagen—in eine physikalische Zeitschrift aufnehmen und es könnte dort auch unter Berufung auf die Wiedergabe meiner Sätze bei Courant-Hilbert (Gelbe Sammlung), S. 216,[5] eine der letzten Nummern mit erklärendem Text aufgenommen werden. Aber hier muß ich die Beurteilung des Wertes den Physikern überlassen. Mit besten Wünschen für 1926 und mit besten Grüßen Ihre ergebene Emmy Noether.